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Abstract

This paper aims to classify the holonomy of the conformal Tractor connection, and relate these holonomies to the geometry of
the underlying manifold. The conformally Einstein case is dealt with through the construction of metric cones, whose Riemannian
holonomy is the same as the Tractor holonomy of the underlying manifold. Direct calculations in the Ricci-flat case and an
important decomposition theorem complete the classification for definitive signature.
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1. Introduction

Conformal geometry is perhaps the most natural extension of Riemannian geometry, and shares many of the same
features with it. However, it was realised early on – as far back as Cartan [16] – that one of the most mathematically
rewarding ways of dealing with conformal geometry was not by analogy with Riemannian geometries, but by analogy
with the other parabolic geometries, using the general Cartan connection as a universal tool.

These parabolic geometries are a class of geometries that include, amongst others, projective, almost
Grassmannian, almost quaternionic, and codimension one CR structures. The common point of these is that their
‘flat’ model space is the Lie group quotient G/P , where P is parabolic. Papers [1,2] by the same author deals with
the projective case, while this paper treats the conformal one.

Many figures contributed to understanding parabolic geometries; Thomas [34,35] developed key ideas for Cartan
connection calculus, and Shiego Sasaki investigated the conformal case in 1943 [32,33], followed by Tanaka [31] in
1979 and the major paper of Bailey, Eastwood and Gover in 1994 [4].

Since then, there have been a series of papers by Čap and Gover [14,13,20,15], developing a lot of the techniques
that will be used in the present paper. Previous papers had focused on seeing the Cartan connection for conformal
geometry as a property of a principal bundle P . More recently, the principal bundle is replaced by an associated
vector bundle, the Tractor bundle T , and the Cartan connection by a connection form for T , the Tractor connection
−→
∇ . With these tools, calculations are considerably simplified.

The purpose of this paper is to analyse one of the invariants of the Tractor connection, the holonomy group. There
is an invariant metric of signature (n + 1, 1) on T , so this holonomy group must be a subgroup of G = SO(n + 1, 1).
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It is a well known fact that a parallel section of the Tractor bundle corresponds to the local existence of an Einstein
metric in the conformal class of a manifold. Beyond this, little was known about reductions of holonomy.

In this paper, we shall classify all the possible local holonomy groups of −→
∇ acting reducibly on T . In doing so,

they must conserve a Lorentzian metric of signature (n + 1, 1). Then a paper by Di Scala and Olmos [17] shows that
we have the complete list: there exist no connected proper subgroups of SO(n + 1, 1) acting irreducibly on Rn+1,1.

Proposition 1.1. There are no local holonomy algebras acting irreducibly on T apart from the full so(n + 1, 1)
algebra.

A very recent paper by Felipe Leitner, [28], proves the same results as in this paper; but his methods, involving
normal Killing forms, are different from those described here.

The classification comes in two main pieces; if a bundle of rank other than 1 or n is preserved, the manifold
decomposes analogously to the De Rham decomposition:

Theorem 1.2. Let (M, [g]) be a conformal, n-dimensional manifold, such that TM has a holonomy preserved
subbundle of rank k, 2 ≤ k ≤ n. Then locally there exists a metric g ∈ [g] such that (M, g) splits locally into
the direct product of two Einstein manifolds N1, N2 of dimensions l = k −1 and n − l. The Einstein constants a and b
of N1, N2 are related by (n − l − 1)a = (1 − l)b. Furthermore, there are canonical inclusions of the Tractor bundles
of N1 and N2 into TM and the Tractor holonomy group of M is locally the direct product of those of N1 and N2.

That last statement requires a bit of explaining, since the Tractor bundles of N1 and N2 are of rank l + 2 and n − l + 2
respectively. However, since these are both Einstein manifolds, the effective rank of their Tractor bundles are l + 1
and n − l + 1, allowing the decomposition.

The converse to Theorem 1.2 is also true. This decomposition is a local result, and may become degenerate along
some embedded submanifolds.

The second step is to list all the possible Tractor holonomies for a conformally Einstein manifold. Using a metric
cone construction, related to the ambient metric of [18,15,21], the following list is established:

Theorem 1.3 (Einstein Classification). The Tractor holonomy of (Mn, [g]), for Mn conformal to an Einstein space
of non-zero scalar curvature, is one of the following groups:

- SO(n, 1), n ≥ 4,
- SO(n + 1), n ≥ 4,
- SU (m) for 2m = n + 1, n ≥ 4,
- Sp(m) for 4m = n + 1,
- G2 for n = 6,
- Spin(7) for n = 7.

Moreover, all these actually occur as holonomy groups.

The Ricci-flat case must be treated differently; in fact, if (Mn, g) is Ricci-flat and conformally indecomposable,
and G is the metric holonomy group of ∇

g , then (Mn, [g]) has Tractor holonomy G o Rn . Thus:

Theorem 1.4. The possible indecomposable Tractor holonomy groups for the conformal manifold (Mn, [g]),
conformally Ricci-flat, are:

- SO(n)o Rn, n ≥ 4,
- SU (m)o R2m,m ≥ 2,
- Sp(m)o R4m,m ≥ 1,
- G2 o R7,
- Spin(7)o R8,

and all of these groups do occur.
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This paper begins with defining and laying out the groundwork for the conformal Tractor bundle and connection.
Furthermore, it will prove the equivalence of this (second-order) point of view with the standard view of the conformal
structure as an equivalence class of metric structures. Some standard results will then be presented, showing how an
Einstein structure in the conformal class is equivalent to a parallel section of the Tractor bundle.

Section 4, the heart of the paper, introduces umbilicity, the conformal equivalent of totally geodicity, and proves
the decomposition theorem previously mentioned.

Section 5 then establishes the list for the Einstein spaces via the metric cone construction, with Section 6
complementing it using different methods to list the possible holonomies for conformally Ricci-flat manifolds.

A brief note on symmetric spaces follows, to illustrate the use of these methods; the paper ends with considerations
of the differences that arise with indefinite signature.

This paper formed the beginning of the author’s thesis [3] and was inspired and supervised by Dr. Nigel Hitchin.

Remark. In all the holonomy groups listed in this paper, the holonomy reduction corresponds to the existence of
a particular metric in the conformal class. Hence we always have a canonical representative in the conformal class,
whenever the holonomy reduces.

2. Cartan connection: Theory

2.1. The Cartan connection

With homogeneous geometries, since Klein, one deals with homogeneous spaces M = G/P , for G a Lie group
acting transitively and effectively on X and P a subgroup.

This makes G into a principal P-bundle over M :

0 → P → G → M → 0.

The left-invariant vector fields on G give rise to an isomorphism T Gu → T Ge ∼= g at every element u ∈ G. This
isomorphism generates a 1-form ω on G, with values in the Lie algebra g.

The Cartan connection is a way of generalising these structures to a non-homogeneous M . We will follow
the exposition used in [14]. Reading that article would explain most of the background and the reasons for the
constructions detailed here.

In all of the following, we assume that M is an n-dimensional manifold, with g a semisimple Lie algebra and a
subalgebra p ⊂ g with p of codimension n in g. There are corresponding groups P ⊂ G; different choices of such
groups may change the global properties of Cartan connections, but not the local ones.

Definition 2.1 (Cartan Connection). On M , given a principal P-bundle P → M , a Cartan connection ω is a section
of T ∗

P ⊗ g, with the following properties:
1. ω is invariant under the P-action (P acting by Ad on g),
2. ω(σA) = A, where σA is the fundamental vector field of A ∈ p,
3. ωu : TPu → g is a linear isomorphism for all u ∈ P .

If p is moreover a parabolic subalgebra (see paper [12]), we may make the further requirement that the connection
be normal; this is a uniqueness condition for the Cartan connection of a particular geometry, similar to the torsion-
free condition for a Levi-Civita connection. In general, this is the condition that the ‘curvature’ of the connection is
closed under a certain Lie algebra homology, see [14]. There is, however, a simpler characterisation of the normality
condition in the conformal case, see the proof of Lemma 2.14. See [14] for a proof of the existence of a normal Cartan
connection in all parabolic geometries.

Paper [12] defines a parabolic subalgebra in an elegant and invariant way; for our purposes, however, it suffices to
require that there exists a graded splitting of g

g = gl ⊕ gl−1 ⊕ · · · ⊕ g1 ⊕ g0 ⊕ g−1 ⊕ · · · ⊕ g−l ,

such that [g j , gk] ⊆ g j+k and

p = g0 ⊕ g−1 · · · ⊕ g−l .

The algebra is then called |l|-graded; the conformal algebra will be seen to be |1|-graded.
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The bundle P and the form ω together define the geometry. The first two conditions on ω are analogous to those of
a standard principal bundle connection. The third condition is very different, however, giving a pointwise isomorphism
TPu → g rather than a map with kernel.

However the Cartan connection does give rise to a connection in the usual sense, the so-called Tractor connection:

2.1.1. The tractor connection
The inclusion P ↪→ G generates a principal bundle inclusion i : P ↪→ G, with G a G-bundle, and generates a

standard principal bundle connection form:

Proposition 2.2. There is a unique ω′
∈ Ω1(G, g) such that ω′ is a principal bundle connection form on G and

i∗ω′
= ω.

Proof. At any point of P ↪→ G, define ω′(X) = ω(X) for X ∈ Γ (TP), and ω′(σA) = A for σA the fundamental
vector field of A ∈ g. These two formulas correspond whenever they are both defined (Property 2 from Definition 2.1),
and completely define ω′ on P . For any given u ∈ G, let g be an element of G such that g(u) is an element of P . Then
we may define ω′ at u via the equality:

Adg · ω′
u = g∗(ω′

g(u)),

Adg acting on g. Property 1 for ω ensures this is well defined.
To see that ω′ is indeed a connection, notice that for v ∈ P , ω′

: TGv → g has maximal rank, since
ω = ω′

|TP : TPv → g is surjective. G-invariance of ω′ generalises this property to all of G. �

This ω′ is the Tractor connection; when we see it as a connection on an associated vector bundle, we shall designate
it by −→

∇ . The Tractor connection obviously generates a Cartan connection by pull-back to TP . From now on, we shall
use Cartan and Tractor connections interchangeably.

Remark. It is not the case that any G connection η will correspond to a Cartan connection via pull-back to P , as the
isomorphism condition TPv → g could be violated. In fact, η must have a maximal second fundamental form on the
canonical subbundles in the splitting of the Tractor bundle. This form is sometimes known as the soldering form [10].
If so, then η comes from a Cartan connection.

2.2. Conformal geometry

There are thus three standard ways of envisaging conformal geometry on a manifold M :

- via a class of conformal metrics [g] related by multiplication by a never-zero function (a zero-order structure),
- via a class of torsion-free conformal connections ∇ (a first-order structure) or
- via a Cartan/Tractor connection ω/−→∇ (a second-order structure),

We will give more details of these three structures, and show their equivalence. The equivalence is easy to
see between the first two structures – [g] defines a conformal frame bundle which is the principal bundle for the
connections ∇ – but is non-trivial with the third structure.

Let co(n) = so(n) ⊕ R be the conformal algebra, with conformal group C O(n). Then let G0 be the principal
C O(n)-frame bundle defined by [g].

This allows us to define the bundles E[w], the weighted line bundles coming from the centre of C O(n), i.e.

E[w] = G0 ×ρ R, ρ(c)(z) = −w
det(c)

2n
z.

It is easy to see that E[−n] = ∧
n T ∗ and E[w] = E[−n]

−
w
n , so any connection on the tangent bundle extends to a

connection on these weighted line bundles.
From now on, we will use the notation B[w] for B ⊗ E[w]. Then there is a map from any g ∈ [g] to a section of

(�2 T )[−2],

g → g =
n

det g
g.
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The metric g determines a metric on ⊗T ∗ by extending g via the relation g(a ⊗b, a ⊗b) = g(a, a)g(b, b). Then det g
is the section of E[−n] = ∧

n T ∗
⊂ ⊗T ∗ whose norm is one or minus one at every point of the manifold. Picking a

g-orthonormal basis for T demonstrates that det g exists whenever g is non-degenerate.
Rescaling g demonstrates that g does not depend on the choice of g. Conversely, given a non-vanishing section ξ

of E[1] – a conformal scale – there is a corresponding metric in the conformal class

gξ = ξ−2g,

with a corresponding Levi-Civita connection ∇. Thus the class [g] and the conformal metric g are equivalent, and we
will use them interchangeably.

The second way of defining the conformal structure is to use the class of preferred connections:

Definition 2.3. Given a conformal manifold G0 → M , a preferred connection ∇ is a torsion-free G0 connection.

Proposition 2.4. Given a conformal structure, a preferred connection is equivalent with a connection on E[1] (or on
any E[a] = (E[1])a , for a 6= 0).

Proof. Similarly with the Levi-Civita connection expression, given g and any connection ∂ on E[2], define ∇ for
sections X, Y and Z of T as:

2g(∇X , Y ) = ∂X g(Y, Z)+ ∂Y g(Z , X)− ∂Z g(X, Y )+ g([X, Y ], Z)− g([X, Z ], Y )− g([Y, Z ], X).

This ∇ is torsion-free. Conversely, each ∇ defines a connection on E[−n] and hence on any E[a], a 6= 0. This means
that for a given conformal structure, ∂ and ∇ are in one-to-one correspondence, and we shall designate them both by
∇. �

In this view, those preferred connections that preserve a metric are exclusively those that preserve a conformal scale
— and hence have trivial curvature on E[w].

2.2.1. The Cartan connection
In the classical, flat, case, conformal geometry is modelled on the sphere Sn . Taking the sphere as the collection of

null-lines in Rn+1,1, the group G of conformal transformations is SO(n + 1, 1) in for n odd, and is double-covered
by SO(n + 1, 1) for even n. Then its Lie algebra has a 1-grading,

g = Rn
⊕ co(n)⊕ Rn∗,

where the conformal group co(n) decomposes into the semisimple part so(n) and the centre R, which is responsible
for the conformal weight in representations of co(n).

Thus the data are g = so(n + 1, 1), g0 = co(n) and p = co(n) o Rn∗, on an n-dimensional space. Note that we
have a natural action of g0 on g and hence an associated bundle to the G0 structure bundle:

G0 ×G0 g.

Moreover, the action of G0 splits g, giving a corresponding splitting:

G0 ×G0 g = T ⊕ co(T )⊕ T ∗.

This decomposition will be used extensively.
It is important to explicate the Lie bracket of this algebra [14]. In fact, [T, T ] = [T ∗, T ∗

] = 0, the Lie bracket
on co(T ) is the natural commutator of endomorphisms, and [c, t∗] = −c(t∗), [c, t] = c(t), for t, c, t∗ sections of
T, co(T ) and T ∗ respectively. The bracket between T and T ∗ is more complicated, and in fact

[t, s∗
] = t ⊗ s∗

− (t ⊗ s∗)τ + s∗(t)δ,

with τ the transpose operator, and δ the identity element in (the centre of) co(T ).
In their papers [14,13], the authors demonstrate that the Cartan connection is equivalent to the standard conformal

structure on a manifold (M, [g]). This is an alternative treatment.
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Theorem 2.5. Let s be a section of any bundle associated to G0, and let X be any vector field. Then if ∇ and ∇̂ are
two preferred connections, there exists a 1-form Υ such that

∇̂X s = ∇X s + [Υ , X ].s, (1)

where [, ] is the Lie bracket for g previously described.

Proof. For X ∈ Γ (T ) and Υ ∈ Ω1(M), [Υ , X ] is a section of co(T ), so this identity makes sense.
We know that ∇̂X = ∇X + q(X), where q is a 1-form with values in co(T ).
However preferred connections are torsion-free, so q(X).Y must be symmetric in X and Y , implying that q lies in

the bundle Q =
(
�

2 T ∗
⊗ T

)
∩ (T ∗

⊗ co(T )), the symmetrisation of T ∗
⊗ co(T ) around the first two elements.

The fact that Q is of rank n and spanned by elements of the form [Υ ,−] can be seen by fairly simple Lie algebra
manipulations (for more details, see [3]; the important idea is that Q ∩ T ∗

⊗ so(T ) = 0 by the uniqueness of the
Levi-Civita connection, ensuring that the rank of Q is ≤ n). �

Note that if ∇ were a metric connection, then ∇̂ would be metric if and only if Υ were a closed form. In fact:

Proposition 2.6. Let ∇ and ∇̂ = ∇ +Υ be two metric, preferred connections, with ξ, ξ̂ the corresponding conformal
scales. Defining the function f as f = ξ ⊗ ξ̂−1

∈ Γ (E[0]) = C∞(M), we have

Υ = f −1d f = d(log f ).

Proof. By direct calculation, using the fact that ∇ annihilates gξ while ∇̂ annihilates gξ̂ = f 2(gξ ). �

A variety of tensors connected with these preferred connections will be needed in subsequent chapters. To define
them, we will use Penrose’s abstract index notation, where Qi is understood as a section of the tangent bundle, Qi a
section of the cotangent bundle, and symmetric and anti-symmetric parts over i and j to be denoted by (i j) and [i j]
respectively. This notation will be used intermittently throughout the paper.

Then if Ri jkl is the curvature tensor of ∇, recall [20]:

Ri jkl = Wi jkl + 2gk[i P j]l − 2gl[i P j]k − 2P[i j]gkl (2)

with Wi jkl the conformally invariant Weyl tensor, and the rho tensor P:

Pi j = −
1

n − 2

(
1
n

Rici j +
n − 1

n
Ric j i −

1
2n − 2

Rgi j

)
(3)

a particularly important tensor for the rest of the paper. Here, Rici j is the Ricci curvature, and R the scalar curvature
Rici j gi j — a section of E[2].

This is in the general case for a conformal connection; in the metric case, the picture is the same, except that P
follows the simpler symmetric formula

Pi j = −
1

n − 2

(
Rici j −

1
2n − 2

Rgi j

)
.

The last relevant tensor for ∇ is the Cotton–York tensor:

CYi jk = 2∇[i P j]k . (4)

It will be important to understand how the tensor P varies under a change of conformal structure, as this formula
is the key to defining the Tractor bundle. Letting P be the rho tensor for ∇ and P̂ be that of ∇̂ = ∇ + Υ ,

P̂(ξ) = P(ξ)− ∇ξΥ +
1
2
[Υ , [Υ , ξ ]], (5)

for ξ any vector field.
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2.2.2. Equivalences
Here we will demonstrate the equivalence of the Cartan connection with the conventional conformal structure.

Though we will draw heavily on [13] for this exposition, we will use a slightly unconventional approach, which has
the advantage of constructing the vital ‘Tractor bundle’ directly.

Remark. For a variety of reasons to do mainly with conventional notation and ease of calculations, we will be working
with the Tractor bundle T in the rest of the paper. However, to get a better understanding of what this bundle actually
is, we need to start by defining the dual bundle T ∗.

Consider the two-jet prolongation of J 2(E[1]) of the weighted bundle E[1]. By definition, we have the short exact
sequences

0 −→ �
2 T ∗

[1] −→ J 2(E[1]) −→ J 1(E[1]) −→ 0,
0 −→ T ∗

[1] −→ J 1(E[1]) −→ E[1] −→ 0.

The conformal structure g contracts �
2 T ∗ to E[−2]. Hence �

2 T ∗ splits as (�2 T ∗)0 ⊕ E[−2], where the first
space is the kernel of the contraction. Then we define the dual Tractor bundle T ∗ as the quotient:

0 −→ (�2 T ∗)0[1] −→ J 2(E[1]) −→ T ∗
−→ 0.

It is actually possible to realise T ∗ as a subbundle of J 2(E[1]) rather than a quotient bundle; we shall not be
needing this result, though. Let D be the second-order operator Γ (E[1]) → Γ (T ∗) given by composing the projection
J 2(E[1]) → T ∗ with the two-jet operator j2.

Proposition 2.7. Given a preferred connection ∇, s any section of E[1] and b any point on the manifold, the map

Ds(b) →

(
s(b),∇i s(b),

1
n

gi j (−∇i∇ j s(b)+ Pi j s(b))
)

generates an isomorphism T ∗
→ E[1] ⊕ T ∗

[1] ⊕ E[−1].

Proof. This formula clearly generates a bundle map J 2(E[1]) → E[1] ⊕ T ∗
[1] ⊕ E[−1]. All that remains is to prove

that (�2 T ∗)0[1] is the kernel of this map. Assume Ds(b) = 0.
Then obviously j1(s) = 0 at b, implying that ∇i∇ j s(b) is the (well-defined) section of �

2 T ∗ that corresponds to
the second derivative of s at b. Thus −gi j

∇i∇ j s(b) = 0, or equivalently j2(s)(b) = ∇i∇ j s(b) ∈ (�2 T ∗)0. �

Paper [13] directly demonstrates the following proposition:

Proposition 2.8. Under a change of preferred connection ∇ → ∇̂ = ∇ + Υ , the isomorphism of Proposition 2.7
changes as x

ωi
z

 →

 x
ωi − Υi x

z + gi jωiΥ j −
1
2

gi jΥiΥ j x

 .
However, for reasons of convenience and notation, we will be working not with the bundle T ∗ but with its dual.

Define the Tractor bundle as T = (T ∗)∗.
The previous results carry through to the dual of T ∗; any preferred connection ∇ defines a splitting T =

E[1] ⊕ T [−1] ⊕ E[−1], and under a change of connection, this splitting changes viax
Y
z

 →

 x
Y + Υ∗x

z − Υ(Y )−
1
2

g(Υ ,Υ)x

 ,
where Υ∗

∈ T [−2] is the dual to Υ using the conformal metric g.
This particularly nice change of splitting formula implies the next vital lemma:
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Lemma 2.9. There is a natural metric 〈, 〉, of type (n + 1, 1), on T .

Proof. Given a preferred connection ∇ and two sections of T , (x, Y, z) and (x ′, Y ′, z′), we define the metric by〈x
Y
z

 ,
x ′

Y ′

z′

〉 = xz′
+ x ′z + g(Y, Y ′).

Direct calculation then shows this formula is invariant under a change of splitting. �

Since T ∗ came about as a quotient bundle of a jet bundle, we have invariant subspaces of T :

E[−1] ↪→ T o E[−1] ↪→ T ,

and invariant projections:

π1
: T → E[1] o T,

π2
: T → E[1].

Call E the subbundle of T that is the inclusion of E[−1]. Note that E is null under 〈, 〉.

Lemma 2.10. There is a P-bundle P which is a principal bundle for T , where P is the subgroup of G with Lie
algebra p.

Proof. The metric 〈, 〉 shows that the structure algebra of T reduces to g = so(n + 1, 1). The invariant null subbundle
E further reduces the structure algebra to {z ∈ g|z(E) = 0}, i.e. to p.

Then we define P to be the bundle of orthonormal frames of T preserving E . �

Let us review what we have so far. Starting from the conformal metric g and the class of preferred connections,
we have constructed, via a tensor P dependent on the connections, a bundle T . And this bundle generates a principal
bundle P , where it is natural to suppose the Cartan connection living. We now need to build this Cartan connection.

Define the Lie algebra bundle A = P ×P g. Then given a preferred connection ∇ we have a splitting of
T = E[1] ⊕ T [−1] ⊕ E[−1], and hence a corresponding splitting:

A = T ⊕ co(T )⊕ T ∗.

In order to finish the construction of this Cartan connection, we will start by building a G = SO(n + 1, 1)
connection on A and then prove that it is a Tractor connection.

Definition 2.11. Given a preferred connection ∇, we have a splitting of A = T ⊕ co(T )⊕ T ∗. Each of these bundles
is a G0-bundle, so ∇ ascends to a connection on A. Then we define the Tractor connection −→

∇ as
−→
∇ X = ∇X + ad(X)+ adP(X),

with the vector X and the 1-form P(X) seen as sections of the Lie algebra bundle A.

Then since ∇ comes from a connection on a principal bundle with structure group G0, −→
∇ comes from a principal

bundle connection with structure group G. Of course, this definition makes no sense without:

Proposition 2.12. This definition is independent of the choice of ∇.

Proof. The formula for the change of splitting of A (deduced directly from that of T ) is:X
Ψ
ω

 →

 X
Ψ + [Υ , X ]

ω + [Υ ,Ψ ] +
1
2
[Υ , [Υ , X ]]

 .
Then a direct calculation proves the result. �
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Thus for any bundle B associated to G, we have an invariant connection form:
−→
∇ = ∇ + ρ(X)+ ρP(X).

In the case of the Tractor bundle T , the detailed expression is:

−→
∇ X

x
Y
z

 =

 ∇X x − g(X, Y )
∇X Y + zX − xP(X)

∇X z + P(X, Y )

 . (6)

Now we get to the result that ties all the structures together:

Theorem 2.13. The connection −→
∇ is a normal Tractor connection.

Proof. Let i be the inclusion i : P ↪→ G, π projection π : P → M , and let ω ∈ Ω1(G, g) be the 1-form associated
with the connection −→

∇ .
We need to prove that µ = i∗(ω) is an isomorphism TPu → g for all points u ∈ P; then µ will be the Cartan

connection generating the Tractor connection ω.
So now assume that µ is not an isomorphism at some point u, so there exists a vector ξ ∈ TPu such that µ(ξ) = 0.

As vertical vectors in P are mapped isomorphically onto p, X = π∗(ξ) is a non-zero vector in Tπ(u).
Then define a local section j of M in P , such that j∗ X = ξ . This also gives us a section i ◦ j of G. Then in the

local frame bundle determined by this section, the connection −→
∇ is of the form

d + j∗i∗ω = d + j∗µ.

This shows that the bundle P is infinitesimally conserved at π(u) in the X direction, or, switching to the associated
bundle E = P ×P e, that there is a section s of E , non-zero at π(u), such that −→

∇ X s = 0 at π(u).
However, the connection on the Tractor bundle is given by Eq. (6):

−→
∇ X

0
0
z

 =

 0
zX
∇X z

 ,
which is a contradiction as s (hence z) is non-zero at π(u). So −→

∇ is indeed a Tractor connection. �

And finally, to complete the circle:

Lemma 2.14. The Cartan connection generated by −→
∇ is normal.

Proof. By [14,26], this result is equivalent with the curvature of −→
∇ lying in the Lie algebra bundle of G×G p.

Alternately, the curvature must preserves the canonical bundle E .
In abstract index notation, the expression for −→

∇ i
−→
∇ j is:

−→
∇ i

−→
∇ j = ∇i∇ j + (δl

j∇i + δl
i ∇ j )+ (P jk∇i + Pik∇ j )+ ∇i (P jk)

+ δl
i ◦ δm

j + δl
i ◦ P jn + Pik ◦ δm

j + Pik ◦ P jn .

This whole expression is a section of (⊗2 T ∗)⊗ (⊗2 A). Recall that A = T ⊕ co(T )⊕ T ∗, which explains why the
various tensors here have differing rank. To get this expression we have used the connection ∇ on T to define the
second covariant derivative; however, we could have used any other connection, as we are about to anti-symmetrise
i and j . Upon doing this, the terms in brackets vanish. Moreover, ρ(X) ◦ ρ(Y ) = ρ(Y ) ◦ ρ(X) and similarly for
1-forms, meaning that:

R
−→
∇

i j = R∇

i j + 2(∇[i (P j]k)+ δl
[i ◦ P j]n + Pk[i ◦ δm

j])

(recall that [i j] means taking the anti-symmetric part over the i and j components). Looking back at equations Eqs.
(2) and (4), we see that this expression is the sum of the Weyl tensor and the Cotton–York tensor. Or, expressed in
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more conventional notation, in the splitting of A determined by ∇:

R
−→
∇
X,Y =

 0
W (X, Y )

CY (X, Y )

 .
Since only T ⊂ A has a non-trivial action on the canonical bundle E ⊂ T , this curvature expression must preserve
E . �

To construct the conformal structure from the Cartan connection is much simpler; indeed, the metric 〈, 〉 descends
to the conformal metric g on T = E⊥/E .

2.2.3. One and two dimensions
Though any 2-manifold is conformally flat, with an infinite dimensional local conformal transformation group,

paper [11] and other unpublished papers by the same author extend the concept of conformal Cartan connections
to one and two dimensions, by constructing Möbius structures. As in higher dimensions, a choice of Weyl structure
determines a splitting of the associated Tractor bundle. There is an ambiguity, however, in the trace-free symmetric
part of the P tensor; this may be chosen freely.

In this paper, the only case where Möbius structures will be needed are during the decomposition results of
Section 4. In that decomposition, we will have a specific metric connection ∇ to work with on our submanifolds.
For the results to be consistent with higher dimensional results, we make the assumption that the Möbius structure is
given by

Phj = −
1
2

Ric jh,

in two dimensions, Ric the Ricci tensor of ∇, and Phj = 0 in one dimensions.

3. Conformally Einstein manifolds

3.1. Important note

In most of the proofs in the remainder of this paper, it will be assumed that for a certain holonomy preserved
subbundle U ⊂ T used in the proof, one has π2(U ) 6= 0. This will not be the case everywhere, of course; however:

Proposition 3.1. Let U ⊂ T be a preserved subbundle under −→
∇ . Then π2(U ) 6= 0 on Σ , an open, dense subset of

M.

Proof. Σ is open because of the π2(U ) 6= 0 condition.
Let b ∈ M \ Σ , and u(b) = (0, Y (b), z(b)) be a non-zero element of Ub. Then extend u(b) locally to a section

u = (x, Y, z) of U by parallel transport along ‘rays’ from b. This implies that −→
∇ u = 0 at b. Then picking any

nowhere-zero section τ of E[−1], we can define the function f : M → R by

f (c) = π2(u)τ.

The derivative of f is (∇x)τ + x(∇τ). At b, this is just (∇x)τ , and, since −→
∇ u = 0 at b:

X. f (b) = (∇X x)τ = g(X, Y )τ.

If Y 6= 0 at b, this is non-zero for some X , so f is non-zero arbitrarily close to b. If Y = 0, then the first derivative
is zero, and the second derivative is thus:

Z .(X. f )(b) = (∇Z∇X x)τ

= −g(X,∇Z Y )τ

= −g(X,−zZ)τ.

with z(b) 6= 0 as u(b) 6= 0. Then the second derivative is non-zero for X = Z 6= 0, for instance, forcing f to be
non-zero arbitrarily close to b.

This implies that π2(u) 6= 0 arbitrarily close to b, proving the result. �

In fact, if the first derivative vanishes, b must be an isolated point.
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The classic examples of this are the various conformally Einstein metrics on the sphere Sn . The sphere is
conformally flat, so there are many holonomy preserved sections of its Tractor bundle.

A preserved section u of negative norm corresponds to the Spherical metric g = π2(u)−2g on the whole space. In
this case, π2(u) is never zero.

A preserved section u of zero norm corresponds to the Euclidean metric g = π2(u)−2g on Rn ∼= Sn
\ {∞}. In this

case, π2(u)(b) 6= 0 for b 6= ∞.
A preserved section u of positive norm corresponds to the hyperbolic metric g = π2(u)−2g on two half-spheres of

Sn . In this case π2(u) is zero only on the boundary Sn−1 cutting Sn into two.

3.2. Einstein spaces

Though it is well known in general that any conformally Einstein space corresponds to a parallel section of the
Tractor bundle T , what follows is a direct proof of this fact using the Tractor connection approach. Paper [22] has a
similar approach.

Remark. This is a first instance of a holonomy reduction of −→
∇ .

Theorem 3.2. For n > 2, if (M, g) has an Einstein metric g in its conformal class then there exists a parallel section
s of its Tractor bundle T .

Proof. Let g be the Einstein metric, Ricg
= λg. Then the P tensor is

P = −
λ

2n − 2
g.

We may use the section ξ of E[1] corresponding to g to set up an isomorphism from functions f : M → R to sections
of E[a], by mapping f to f ξa . In this set up:

−→
∇

 1
0

−
λ

2n − 2

 =

 0
λ

2n − 2
I d −

λ

2n − 2
I d

0

 = 0. �

To prove the converse of this theorem, we need the following lemma:

Lemma 3.3. If a conformal connection ∇ has a symmetric Ricci tensor, then ∇ is actually a metric connection.

Proof. Let Ri
i jkl be the curvature of ∇. Then Ri

i jkl acts on the determinant bundle E[n] via its trace Ri
i ikl . However,

by the first Bianchi identity,

Ri
i ikl = −Ri

ikli − Ri
ilik

= Rickl − Riclk,

the anti-symmetric part of the Ricci tensor. So if ∇ has a symmetric Ricci tensor, its curvature must vanish on E[n],
so locally ∇ must preserve a section η of the determinant bundle. Then η1/n is a preserved conformal scale and

g = η−2/ng

is a metric preserved by that ∇. �

Theorem 3.4. For n > 2, if a line bundle L of T is holonomy preserved, then a section s of L is preserved, and
(M, [g]) has an Einstein metric g = (π2(s))−2g in its conformal class, wherever π2(s) 6= 0.

Proof. The line bundle L defines a connection on E[1], and hence a torsion-free connection on T , in the following
way. Let e be any nowhere-vanishing section of E[1], and let l be the section of L such that π2(l) = e. Then define
∇e = π2(

−→
∇ l); it is easy to see that this is indeed a connection.

Using ∇, we split T = E[1] ⊕ T [−1] ⊕ E[−1] in the usual way. Then Eq. (6) implies that π2(
−→
∇ (x, Y, z)) =

∇x − g(Y,−). Since by definition of π2(
−→
∇ l) = ∇π2(l), we must have Y = 0 for l (and hence for any section of L).
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If L is not null, then a section s = (x, 0, xµ) of constant norm, is preserved. This generates a metric g =

(π2(s))−2g. But −→
∇ X (x, 0, xµ) = (∇X x, xµ(X)− xP(X), µ∇X x) = 0. This implies that P = µg, so Ricg

= λg for
λ = (2 − 2n)µ.

On the other hand, if L is null, z = 0, and −→
∇ X (x, 0, 0) = (∇X x,−xP(X), 0). Thus P = 0 and hence ∇ has a

symmetric Ricci tensor, implying that it is actually a metric connection for some metric g — which moreover is Ricci-
flat. Set x ∈ Γ (E[1]) to be the conformal scale corresponding to g. Then the section s = (x, 0, 0), is parallel. �

Proposition 3.5. In the two-dimensional case, one merely has the one-way implication that an Einstein metric of
constant scalar curvature gives a preserved section of T .

Remark. Note that the sign of 〈s, s〉 is the opposite of the sign of the Einstein constant λ.

4. Decomposition theorem

This section presents the decomposition theorem for Tractor connections, similar to the De Rham decomposition
for Riemannian connections.

Remark. Related terminology may be found in [25].

4.1. Preparatory results

Definition 4.1. Given a metric g on M with Levi-Civita connection ∇, a subbundle U ⊂ T is umbilical for the
connection ∇, if there exists a vector field H such that for X and Y sections of U ,

∇X Y = ∇̃X Y + g(X, Y )H,

for ∇̃ some connection on U , and H a vector field.

Remark. Note that an umbilical subbundle is automatically integrable, as

[X, Y ] = ∇X Y − ∇Y X = ∇̃X Y − ∇̃Y X + (g(X, Y )− g(Y, X)) H

= ∇̃X Y − ∇̃Y X,

a section of U .

Lemma 4.2. U being umbilical is equivalent to

∇X Y ∈ Γ (U ), (7)

whenever X and Y are orthogonal sections of U.

Proof. If U is umbilical, then Eq. (7) is true by definition

∇X Y = ∇̃X Y + g(X, Y )H

= ∇̃X Y ∈ Γ (U ).

So we now assume Eq. (7) and aim to prove umbilicity. One may easily see, by choosing an orthogonal frame for U ,
that U must be integrable.

Define a connection ∇̃ on U , by orthogonal projection. Then the map Φ = ∇ − ∇̃ is bilinear, U ⊗ U → U⊥, and
symmetric since ∇X Y − ∇Y X = [X, Y ] is a section of U . By assumption, Φ(X, Y ) = 0 whenever g(X, Y ) = 0.

Now let (X j ) be a frame of U , chosen so that the g(X j , Xk) are nowhere zero (one can do this, for instance,
by choosing a standard orthonormal frame (X j ) and mapping X j → X j +

1
2n
∑ j

l=1 Xl ). Pick H in U⊥ such
that Φ(X1, X1) = g(X1, X1)H . Then since X1 is orthogonal to τ1,1, j = g(X1, X1)X j − g(X j , X1)X1, one has
Φ(X1, τ ) = 0 and hence

Φ(X1, X j ) =
1

g(X1, X1)
g(X j , X1) (g(X1, X1)H)

= g(X j , X1)H.
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The same argument with the orthogonal sections τ j,1,k and X j demonstrates

Φ(X j , Xk) = g(X j , Xk)H.

This extends trivially to the whole of U . Thus ∇X Y = ∇̃X Y + Φ(X, Y ) = ∇̃X Y + g(X, Y )H . �

Note that being umbilical is a conformally invariant condition, as changing ∇ by Υ changes H to H − Υ∗, since
all the other terms in [Υ , X ] · Y are tangent to U (see Eq. (1)). Thus choosing Υ∗

= H , we can make U into a totally
geodesic foliation. In other words, there are preferred connections for which U is totally geodesic.

4.2. Preserved subbundles

Let K be a subbundle of T of rank k, 2 ≤ k ≤ n, preserved by −→
∇ . Then K defines a subbundle U of T as follows.

We assume, from Proposition 3.1, that K and K ⊥ are locally transverse to E . Recall that E ∼= E[−1] ⊂ T is the
canonical line bundle, and that E⊥ ∼= T M[−1] ⊕ L−1 is of rank n + 1 in T .

Hence, K ∩ E⊥ is a bundle of rank k − 1, and π1 is injective on (K ∩ E⊥) (since K ∩ E = 0, so π1 is injective
on K ). Moreover π1(E⊥) = T [−1], so

U = π1(K ∩ E⊥) ⊂ T [−1]

is a well-defined, rank k − 1 bundle. Use any conformal scale to get an isomorphism T ∼= T [−1]. Since changing the
section simply results in scaling any element of T [−1], we may see U as a well-defined subbundle of T .

Proposition 4.3. U is an integrable, umbilical foliation of T .

Proof. Let X and Y be orthogonal sections of U . Fix any metric in the conformal class. Then0
Y
z

 ,
is a section of K ∩ E⊥, for some z. Consequently

−→
∇ X

0
Y
z

 =

 0
∇X Y + zX

z′

 ,
for some z′. Since K is preserved by −→

∇ , this is a section of K ; it is clearly a section of E⊥. As a consequence, we
know that

∇X Y + zX ∈ Γ (U ).

Thus ∇X Y is also a section of Γ (U ), making U umbilical, and hence integrable. �

We shall see later that U is Einstein (i.e. all leaves N of U are conformally Einstein under the restricted conformal
structure).

Proposition 4.4. There is a Tractor bundle TU on the leaves N of the foliation defined by U, and a well-defined
inclusion TU ⊂ T .

Proof. If ∇ is a U -preferred connection – one that makes U , and its foliation, totally geodesic – in the splitting of T
that it defines,

T = L1
⊕ T [−1] ⊕ L−1.

Define TU as the subbundle

TU = L1
⊕ U [−1] ⊕ L−1.
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To check that this is well defined, we change ∇ to ∇
′, another U -preferred connection. This is equivalent to changing

∇ by an Υ ∈ Γ (g(U ) ⊂ T ∗) for any metric g in the conformal class. Then the splitting changes as:x
Y
z

 →

 x
Y + Υ∗x

z − Υ(Y )−
1
2

g(Υ ,Υ)x

 ,
which, since Υ∗ is a section of U , does not change the definition of TU nor its inclusion into T . �

We are now ready to prove the main theorem.

Theorem 4.5. Assume there is a bundle K of rank k preserved by −→
∇ , and the foliation U that it generates splits T .

Let l = k −1 be the rank of U. Then there exists a metric g in the conformal class of M such that the manifold (M, g)
splits locally as the direct product

(M, g) = (N1, h1)× (N2, h2)

where h1 and h2 are Einstein metrics with Einstein coefficients λ1, λ2, possibly zero, related by

(n − l − 1)λ1 = (1 − l)λ2.

The converse is also true. And in this situation the holonomy −→
hol of −→

∇ is the direct sum of Lie algebras
−→
hol =

−→
holN1 ⊕

−→
holN2

where −→
holN1 is the holonomy of −→

∇ N1 and −→
holN2 that of −→

∇ N1 .

Note that the subbundle of T generated by K ⊥ is just U⊥. There are really two situations here: the case when
K ∩ K ⊥ is of rank 1, and that where it is of rank 0.

4.2.1. K degenerate
If K ∩ K ⊥

= L, a line bundle, necessarily null, then by Theorem 3.4 there must be a preserved section v of L and
hence a Ricci-flat metric g on M , with Levi-Civita connection ∇.

We have the bundles U and U⊥ as before, both integrable and umbilical. We will now show that g is locally a
product metric of the leaves generated by U and U⊥. First, we shall demonstrate that these leaves are totally geodesic
under g.

Lemma 4.6. Let X be a section of U. Then for any A ∈ Γ (T ), ∇A X is a section of U.

Proof. In the splitting defined by g, one section of K is the Einstein vector

v =

1
0
0

 .
Since v is also a section of K ⊥, K must lie in v⊥. In other words, K is of the formR

U
0

 .
Now consider

−→
∇ A

0
X
0

 =

−g(A, X)
∇A X

0

 .
Since −→

∇ preserves K , ∇A X must be a section of U . �

This shows that U (and U⊥) are totally geodesic foliations. Moreover, they are preserved by ∇ in every direction.
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Remark. As a consequence of that, if X and B are commuting sections of U and U⊥ respectively,

∇X B = ∇B X = 0.

Let h1 = g|U , Y and X be sections of U , A any section of T . Then

(∇Ah1)(X, Y ) = A.h1(X, Y )− h1(∇A X, Y )− h1(X,∇AY )

= A.g(X, Y )− g(∇A X, Y )− g(X,∇AY )

= (∇Ag)(X, Y )

= 0,

as ∇A X and ∇AY are sections of U , and h1 = g on sections of U . Consequently we have demonstrated, for h1 and
for h2 = g|U⊥ :

Lemma 4.7. ∇h1 and ∇h2 are both zero.

Now pick sections X and Y of U commuting with a section B of U⊥. By the previous lemma

B.h1(X, Y ) = 0,

so the Lie derivative of h1 in the direction of B is

(LBh1) (X, Y ) = B.h1(X, Y )− h1([B, X ], Y )− h1(X, [B, Y ]) = 0.

We may choose local coordinates that respect the foliations U and U⊥ to get frames (X j ) of U and (Bk) of U⊥,
commuting with one another. Consequently, if N1 is a leaf of U and N2 a leaf of U⊥, h1 is preserved by translation
along N2 and vice versa. This demonstrates that

Proposition 4.8. Locally, (M, g) = (N1, h1)× (N2, h2).

This implies that ∇|U is the Levi-Civita connection of h1, and ∇|U⊥ that of h2. To finish this exploration, we require:

Lemma 4.9 (Restricted Ricci Curvature). Given a foliation U preserved by ∇, the Ricci tensor of ∇|U is the Ricci
tensor of ∇, restricted to U.

Proof. Notice that this condition makes U integrable and totally geodesic. Let (X j ), (B j ) be a coordinate frame for
T , with X j ∈ Γ (U ) and the (B j ) complementary. Then

Ric(X j , Xk) =

(∑
l

X∗

l yRXl ,X j Xk

)
+

(∑
l

B∗

l yRBl ,X j Xk

)
.

But the second term on the right is zero, as R−,− X j must be a section of U , and the first term is just the Ricci curvature
of ∇U . �

Consequently, one can see that ∇ is Ricci-flat on U and on U⊥ (hence on N1 and N2).
In this case the relation

(n − l − 1)λ1 = (1 − l)λ2

is trivially satisfied, as both λ j are zero.
The converse to this construction is trivial: a direct product of Ricci-flat spaces is Ricci-flat. Then K may be

reconstructed as

K =

 R
T N1

0
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in the global Ricci-flat metric’s splitting. Since T N1 must be totally geodesic, −→
∇ preserves K and

K ⊥
=

 R
T N2

0

 .
Now notice that since all P are zero, −→

∇ acts on TN1 along N1 exactly as the Tractor connection −→
∇ N1 does. Moreover,

−→
∇ acts trivially on TN1 along N2. Since the opposite result holds for TN2 , and since these two Tractor bundles span
all of T , one has

−→
hol =

−→
holN1 ⊕

−→
holN2 .

4.2.2. K non-degenerate
We seek to imitate the proofs of the previous section in the case where K ∩ K ⊥

= 0. First of all, we seek to find
an imitation of the Ricci-flat metric g. We shall use a preferred connection rather than a metric — though it will turn
out to be a metric connection in the end.

Starting off, pick ∇
′ such that U is totally geodesic. In the rest of these proofs, X and Y will be sections of U , B

and C sections of U⊥.
Since U⊥ is umbilical,

∇
′

BC = ∇̃
′

BC + H g̃(B,C),

for some H ∈ Γ (U ) and any metric g̃ in the conformal class. Then replace ∇
′ with ∇, by adding the 1-form

Υ = g̃(H). This connection makes U⊥ totally geodesic, but since

∇X Y = ∇
′

X Y + Υ(X)Y + Υ(Y )X − H g̃(X, Y )

is a section of U , then the bundle U remains totally geodesic under ∇. In fact ∇ is the sole preferred connection
that makes U and U⊥ totally geodesic — as adding any Υ 6= 0 would destroy this property on at least one of these
bundles.

Now we try and calculate K and K ⊥ in the splitting given by ∇. We know that elements of K ∩ E⊥ are of the form0
X
z

 ,
for some z ∈ Γ (L−1) depending on X , and elements of K ∩ E⊥ are of the form0

B
z′

 .
Hence, choosing Y such that Y and X are not orthogonal,

−→
∇ Y

0
X
z

 =

 −g(Y, X)
∇Y X − zY

z′′


now the middle piece is a section of U as well, so there exists a section

v1 =

 a
0
z′′


in K , with a 6= 0. Since K ⊥ must be orthogonal to this vector, K ⊥

∩ E⊥ must be of the form0
B
0

 ,
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and the similar result goes for K ∩ E⊥. Consequently, by essentially the same argument as for Lemma 4.6, we have

Lemma 4.10. For any A ∈ Γ (T ), ∇A X is a section of U.

We may, as before, choose frames (X j ) and (Bk) for the bundles U and U⊥ such that the frames commute. Then

∇X j Bk
= ∇Bk X j

= 0.

This implies that the curvature tensor of ∇ splits into two components, its curvature on U and its curvature on U⊥.
The Ricci tensor does the same, (see Lemma 4.9), as does the rho tensor, since U and U⊥ are orthogonal. So

P = P1 + P2.

Here P1 is a section of U ⊗ U and P2 a section of U⊥
⊗ U⊥. We shall soon see that these are rho tensors in their own

right.
We now aim to prove:

Lemma 4.11. The connection ∇ is metric.

Proof. Consider the section v1 in K , and

−→
∇ Bv1 =

 ∇Ba
z′′ B + agP(B)

∇B z′′

 .
The middle term z′′ B + agP(B) = z′′ B + agP2(B) must be zero, showing that g jk(P2)i j is some multiple of the
identity on U⊥

[1] — hence that P2 is a symmetric tensor. As the same is true of P1, ∇ has symmetric rho tensor,
hence symmetric Ricci tensor, hence preserves a volume form, hence preserves a metric g in the conformal class. �

Defining h1 = g|U , h2 = g|U⊥ , one can, exactly as in Proposition 4.8, get the proof of the decomposition:

Proposition 4.12. Locally, (M, g) = (N1, h1)× (N2, h2), where N1 is a leaf of U and N2 is a leaf of U⊥.

Moreover, we have shown that P1 and P2 are multiples of h1 and h2 respectively; consequently Ric1 and Ric2 are as
well, so both N1 and N2 are Einstein manifolds, with coefficients λ1 and λ2. We now aim to show the relation between
these coefficients.

The scalar curvature R of ∇ is lλ1 + (n − l)λ2. Hence the rho tensor, by Eq. (3), is:

P1 = −
1

n − 2

(
Ric1 −

1
2n − 2

Rh1

)
= −

(2n − 2 − l)λ1 + (l − n)λ2

(n − 2)(2n − 2)
h1.

P2 = −
1

n − 2

(
Ric2 −

1
2n − 2

Rh2

)
= −

(−l)λ1 + (n − 2 + l)λ2

(n − 2)(2n − 2)
h2.

Now there is a section

v1 =

1
0
f


of K (we may freely use 1, as we have established that ∇ is metric, hence got an isomorphism L1 ∼= R × M), and a
corresponding section

v2 =

 1
0
f ′
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of K ⊥. Since v2 is orthogonal to v1, f ′
= − f . Then

−→
∇ Bv1 =

 0
f B − P2(B)

∇B f


as a consequence of this, we see that f is a constant and

f = −
(2n − 2 − l)λ1 + (l − n)λ2

(n − 2)(2n − 2)
.

carrying out a similar operation on v2 yields the following formula

f =
(−l)λ1 + (n − 2 + l)λ2

(n − 2)(2n − 2)
.

Equating these terms and rearranging gives us the required

(n − l − 1)λ1 = (1 − l)λ2.

There is, however, a rather more fundamental reason for this seemingly arbitrary equality. For:

Proposition 4.13. The condition

(n − l − 1)λ1 = (1 − l)λ2

is equivalent to the rho tensor PN1 of ∇|N1 being equal to the restriction of the rho tensor on M,

PN1 = P|U = P1.

Proof.

P1 − PN1 =

(
−
(2n − 2 − l)λ1 + (l − n)λ2

(n − 2)(2n − 2)
−

−λ1

2(l − 1)

)
h1

= ((n − l − 1)λ1 − (1 − l)λ2)

(
(n − l)

(l − 1)(n − 2)(2n − 2)

)
h1

Similarly

P2 − PN2 =

(
−
(−l)λ1 + (n − 2 + l)λ2

(n − 2)(2n − 2)
−

−λ2

2(n − l − 1)

)
h2

= ((n − l − 1)λ1 − (1 − l)λ2)

(
l

(l − 1)(n − 2)(2n − 2)

)
h2.

Consequently, P1 = PN1 if and only if P2 = PN2 , and if and only if (n − l − 1)λ1 = (1 − l)λ2. �

This is the essence of the decomposition: because of this result, −→
∇ operates on TN1 along T N1 = U just as the

reduced Tractor connection −→
∇ N1 does. Now let v2 be the Einstein vector in TN1 ; then −→

∇ along T N2 = U⊥ will
operate trivially on

K = v⊥

2 ∩ TN1 ,

since K is spanned by v1 and by sections of (0, T N1, 0). Consequently the holonomy algebra of −→
∇ restricted to K is

−→
holN1 .

The similar result holds for K ⊥. Thus, since K ⊕ K ⊥
= T ,

−→
hol =

−→
holN1 ⊕

−→
holN2 .
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To reverse this decomposition, define (M, g) as (N1, h1) × (N2, h2) with N1 and N2 Einstein with Einstein
coefficients related as above. Then the overall Tractor connection −→

∇ will be generated by −→
∇ N1 and −→

∇ N2 as above.
Then let v2 be the Einstein vector of TN1 . Then the bundle

K = v⊥

2 ∩ TN1 ,

is preserved by −→
∇ as is its orthogonal complement

K = v⊥

1 ∩ TN2 ,

where v1 is the Einstein vector of TN2 . Note that v1 ∈ Γ (K ) and v2 ∈ Γ (K ⊥), which explains the somewhat odd
numbering of them.

Example. To illustrate these proofs, we can see that S4
× R4 does not have any holonomy-conserved subbundles in

its Tractor connection (in fact it has full holonomy), while S4
× H4 is conformally flat, for H4 the hyperbolic 4-space.

Remark. Some old results of Brinkmann [7,8] can be proved directly using this decomposition theorem. For instance,
the fact that any 4-manifold with two distinct Einstein structures in the conformal class is conformally flat (a direct
consequence of the flatness of any Möbius structure with reduced holonomy, see next section). In our setting, the
preserved subbundle spanned by the two Einstein vectors decomposes the manifold into a direct product of three-
and one-dimensional Einstein spaces. But both these spaces are conformally flat, so our original manifold has trivial
holonomy; in other words, it is conformally flat.

Remark. Analogously to the previous remark, we can see that if not conformally flat, a five-dimensional manifold can
have up to two linearly independent Einstein structures, a six-dimensional manifold can have three, an n-dimensional
manifold n − 3.

5. Einstein spaces: Metric cones

In this section we will give a full classification of the possible Tractor holonomies of the non-Ricci-flat Einstein
spaces, using to this effect the construction of a metric cone, whose Levi-Civita holonomy corresponds to the Tractor
holonomy of the original manifold.

Remark. As we mentioned in the introduction, this metric cone construction is related to the ambient metric
construction of [18,15], for conformally Einstein manifolds. The actual relation is slightly subtle, the formal existence
is proved in [18] and an explicit construction is given in [28]. This also provides a direct proof of a result of [21],
namely that the ambient metric construction always exists if the manifold is conformally Einstein.

Definition 5.1. A conformal manifold M is said to be indecomposable if it cannot be decomposed into Einstein spaces
as in the previous section. In other words, −→

∇ may preserve a single line bundle (and its orthogonal complement), but
nothing else.

Remark 5.1. In the non-Ricci-flat Einstein case, indecomposable implies that the Tractor holonomy acts irreducibly
on Rn+1 or Rn,1 (since the only preserved line bundle is positive or negative definite).

As all Einstein manifolds of dimension 3 are conformally flat, we shall assume n > 3.
Let (M, g) be an Einstein manifold, Ric = λg, λ 6= 0.

Theorem 5.2 (Einstein Classification). The Tractor holonomy of Mn is one of the following, n ≥ 4:

- SO(n, 1),
- SO(n + 1),
- SU (m) for 2m = n + 1,
- Sp(m) for 4m = n + 1,
- G2 for n = 6,
- Spin(7) for n = 7.

Moreover, all these holonomy groups actually occur.
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Remark. It is interesting to note that there is only a single holonomy possible for an indecomposable Einstein
manifold with negative constant.

The remainder of this chapter will be dedicated to proving Theorem 5.2.

Definition 5.3. Given an Einstein manifold (M, g), we define the metric cone on M as (N = R+
× M, h) with

h =
1
µ

dt2
+ t2g,

and µ =
λ

n−1 .

Note that h is of definite signature if and only if M has positive Einstein constant. In the negative case, we call
(N , h) a Lorentzian cone.

Then defining ∇ as the Levi-Civita connection of N , and remembering the formula:

2〈∇X Y, Z〉 = X.〈Y, Z〉 + Y.〈X, Z〉 − Z .〈X, Y 〉

+ 〈[X, Y ], Z〉 + 〈[Z , X ], Y 〉 + 〈[Z , Y ], X〉,

we can calculate the following equalities. For T =
∂
∂t , and X i a local basis of vector fields of M , extended trivially to

N :

∇T T = 0,

∇X i T =
1
t

X i ,

∇T X i =
1
t

X i ,

∇X i X j = ∇̃X i X j − tµg(X i , X j )T,

with ∇̃ the Levi-Civita connection of g.
Given a path τ in {1} × M , with tangent vector field Z , let Y be the parallel transport of a vector along the path,

thus ∇Z Y = 0. Split Y as Y ⊥
+ aT , with Y ⊥

∈ Γ (T M). Then we get the following result:

Lemma 5.4. Extend Z and Y in the T direction, with Z(t, x) = Z(x), and

Y (t, x) =
1
t

Y ⊥(x)+ a(x)T .

Then ∇T Y = 0 and ∇Z Y = 0 on τ × R+.

Proof. The function a is independent of t , so T (a) = 0. Hence ∇T (aT ) = 0. Furthermore,

∇T

(
1
t

Y ⊥

)
= T

(
1
t

)
Y ⊥

+
1
t2 Y ⊥

=

(
−

1
t2 +

1
t2

)
Y ⊥

= 0,

so ∇T Y = 0.
We can expand out the original equation ∇Z Y = 0 at t = 1, giving:

0 = ∇̃Z Y ⊥
− µg(Z , Y ⊥)T + aZ + Z(a)T .

By linearity, this is equivalent to the two equations 0 = ∇̃Z Y ⊥
+ aZ and 0 = (−µg(Z , Y ⊥)+ Z(a))T .

Then similarly expanding ∇Z Y for varying t :

∇Z Y =
1
t
∇̃Z Y ⊥

−
t
t
µg(Z , Y ⊥)T +

a
t

Z + Z(a)T

=
1
t
(∇̃Z Y ⊥

+ aZ)+ (−µg(Z , Y ⊥)+ Z(a))T

= 0. �
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Now let τ̌ be another path with same end points as τ and such that π ◦ τ = π ◦ τ̌ under the projection π : N → M .
The tangent field of τ̌ is Ž = Z + αT , implying that ∇Ž Y = 0. So the parallel transport of a vector along τ and τ̌ are
the same, implying that when we are computing the holonomy of ∇, we only need to consider paths in {1}× M ∼= M .

We can now turn to the Tractor connection −→
∇ on T , for the conformal structure g ' [g]. Using the splitting given

by the metric g, we can see the formal similarities with ∇ at t = 1.

As g is Einstein, with coefficient λ, then −→
∇

(
n−1
λ
, 0,− 1

2

)
= 0. Furthermore, for R =

(
n−1
λ
, 0, 1

2

)
, then:

−→
∇ X i R =

 0
X i
0

 and −→
∇ X i

 0
X j
0

 =

 0
∇̃X i X j

0

− µg(X i , X j )R.

Hence under the formal identification of R with T and (0, X i , 0) with X i , we get ∇Z ∼=
−→
∇ Z for Z ∈ Γ (T ) at

t = 1. Then by the previous lemma and its implication for the holonomy of ∇, the next theorem is proved:

Theorem 5.5. The holonomy groups of (T ,−→∇ , (M, g)) and (T N ,∇, (N , h)) are isomorphic.

Hence the holonomy of −→
∇ is metric, and irreducible by Remark 5.1, and must be one of those classified by

Merkulov and Schwachhöfer in [30]. In the negative Einstein case, a look at the table shows that the only possible
holonomy is the full SO(n, 1) group itself. For the positive Einstein, we need the following result:

Proposition 5.6. The metric cone (N , h) is Ricci-flat.

Proof. By the definition of h and the corresponding ∇, the curvature R = R∇ is

RT,− = 0,
RX i X j Xk = R̃X i X j Xk − µg(X j , Xk)X i + µg(X i , Xk)X j ,

with R̃ the curvature of ∇̃.
Then taking traces,

Ric(T,−) = 0,

Ric(X j , Xk) = R̃ic(X j , Xk)+ (1 − n)µg(X j , Xk)

= λg(X j , Xk)− λg(X j , Xk)

= 0. �

So the possible holonomies reduce to those corresponding to metrics which are Ricci-flat, namely SO(n +

1), SU (m), Sp(m),G2 and Spin(7).
The SO(n + 1) case is generic. The SU (m) holonomy on the cone corresponds to Sasaki–Einstein manifolds, the

Sp(m) to 3-Sasakian ones, G2 and Spin(7) to weak holonomy manifolds [5]; all of which can be realised on cones
over compact manifolds, implying that all exist as holonomy groups of conformal Tractor connections on compact
manifolds.

It is immediate that a metric cone on any one-dimensional space is flat. We now aim to show that the metric cone
on a two-dimensional Einstein space of constant scalar curvature is also flat.

Proposition 5.7. Any Tractor connection in two dimensions with a preserved Tractor u is flat.

Proof. In this case, using the metric defined by π2(u) to identify T and T ∗, we have,

P = µI d,

With µ a constant. However, [11], the only curvature element of a Tractor/Möbius connection in two dimensions is
the Cotton–York tensor — which must vanish entirely, as ∇P = 0, making the connection flat. �

Remark. In [6] Baston presents a local twistor theory, which, in the case of conformal manifolds, is just given by
the vector bundle associated to G0 under the spin representation of G0, and the extension of −→

∇ to this new context.
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A parallel section of this bundle is equivalent, by [19], with the existence of a spinor ψ on the underlying manifold
solving the twistor equation for all vector fields X :

∇̃Xψ +
1
n

X.Dψ = 0,

with D the Dirac operator. Paper [23] by Habermann analyses solutions to this twistor equation; she shows that these
imply that the manifold is conformally Einstein, of non-negative scalar curvature. So twistor–spinors should be visible
in the cone construction.

A connection preserves an element if and only if its holonomy group does so as well. Now, since −→
∇ has the same

holonomy as the cone connection ∇, it preserves a Tractor spinor if and only if ∇ preserves a spinor ψ̂ on the cone.
That equation is 0 = ∇X ψ̂ = ∇̃X ψ̂ + (1 +

1
n trace(gP))X · ψ̂ . Decomposing the spinor representation in terms of

irreducible representations of ∇̃ gives the twistor equation.
The holonomy groups G2 and Spin(7) correspond to the existence of a preserved spinor on the cone — thus to the

existence of twistor–spinors on the manifold itself.

Remark. The concept of a twistor–spinor is a generalisation of that of a Killing spinor. A Killing spinor is a spinor
ψ solving the equation

∇Xψ = λX.ψ

for all vector fields X and some constant λ. In [5], Bär showed that having a Killing spinor is equivalent with having a
parallel spinor on the metric cone. So the cases of weak holonomy SU(3) and nearly Kählerian structures are covered
by the Tractor connection; in fact in his paper [9] constructing manifolds of exceptional holonomy, R.L. Bryant
produces manifolds of holonomy G2 and Spin(7) as metric cones on SU (3)/T 2 and SO(5)/SO(3) respectively.
Thus all the holonomies listed actually occur.

We can now turn to the Ricci-flat case, which is actually simpler than the general Einstein case, but with an added
subtlety.

6. Ricci-flat spaces

Let (Mn, g) be a Ricci-flat space of indecomposable Tractor holonomy. As Mn is Ricci-flat, its Tractor holonomy
is contained within SO(n) o Rn . Fix a point b ∈ M for calculating the holonomy groups, and let H be the metric
holonomy of M , D its Tractor holonomy, h, l their Lie algebras.

Then:

Lemma 6.1. H ⊂ D, or, equivalently, h ⊂ l.

Proof. Let Y be the parallel transport of a vector along a path τ with tangent field X ; in other words ∇X Y = 0, for ∇

the metric connection on M . Then

−→
∇ X

x
Y
0

 =

∇X x − g(X, Y )
∇X Y = 0

0

 ,
which is zero for x =

∫
τ

g(X, Y ), proving that every metric holonomy element is a Tractor holonomy element.
This argument also works in reverse, showing that π(l) = h, where π is the projection of co(n)b ⊕ Tb onto its first
component. �

This demonstrates that l ⊂ b = h ⊕ Tb. But first:

Lemma 6.2. The representation of h on Tb is irreducible.

Proof. If a bundle S ⊂ T is preserved by ∇, then the bundle E[1] ⊕ S is preserved by −→
∇ . Thus, since we assume our

Tractor holonomy to be indecomposable, h must act irreducibly on Tb. �
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Then since the Lie bracket on Tb is trivial, the adjoint representation of h ⊂ l ⊂ b on the second component of
b is the usual, irreducible one. Accordingly this adjoint representation splits b into two irreducible representations,
isomorphic to h and Tb.

As a consequence, l ∼= h or l ∼= b. We now claim that

Lemma 6.3. l ∼= b.

Proof. Reasoning by contradiction, we assume that l ∼= h, and go on to show that this violates our indecomposability
assumption.

Express b as h0 ⊕ Rn
0 , the sum of the irreducible representations of h. Then, as h0 ∼= h acts irreducibly on Tb, there

is, at b, a new splitting of T corresponding to the splitting Rn∗
⊕ h0 ⊕ Rn

0 . This splitting is

E[−1]0 ⊕ T [−1]0 ⊕ E[−1].

Then h ⊂ l preserves the new vectors (1, 0, 0) and (0, 0, 1). This shows that l preserves a rank 2 subbundle,
contradicting indecomposability. �

Putting this together, we can now claim the following theorem:

Theorem 6.4. The possible indecomposable Tractor holonomy groups for the conformal manifold (M, g),
conformally Ricci-flat, are:

- SO(n)o Rn, n ≥ 4 (generic),
- SU (m)o R2m,m ≥ 2 (Calabi–Yau),
- Sp(m)o R4m,m ≥ 1 (hyper-Kähler),
- G2 o R7 (see [9]),
- Spin(7)o R8 (see [9]),

and all of these groups do occur.

Remark. This result offers an alternative proof for the theorems in Listing’s paper [29], in the special case of
conformally Ricci-flat manifolds.

Remark. The metric cones constructed in the previous chapter are Ricci-flat (pseudo-)Riemannian manifolds. They
are not, however, indecomposable; in fact, their Tractor holonomy is equal to their metric holonomy. This property
characterises metric cones.

7. Addendum: Symmetric spaces

A symmetric space (S, g) is a manifold such that ∇
g Rg

= 0 for Rg the full curvature tensor. Since symmetric
spaces are direct products of Einstein spaces, ∇

gP = 0, so ∇
gW g

= 0 as well, for the Weyl tensor W g .
Kobayashi and Nomizu [24] define the infinitesimal holonomy of a connection −→

∇ as the span of the iterated
derivatives of its curvature tensor

−→
∇ X1

−→
∇ X2 . . .

−→
∇ Xm−2

−→R (Xm−1, Xm),

estimated on any vector fields X1 . . . Xm . They demonstrate that the infinitesimal holonomy is contained in the
holonomy algebra.

The curvature of the Tractor connection is −→R = W g . Now −→
∇ X = X + ∇

g
X + P(X) and the middle element has no

effect on either W g or on P (since S is a direct product of Einstein spaces). Consequently if we look at the span of the
iterated derivative of W g , we are looking at the algebraic span of W g under the action of X + P(X) for all X . Thus
the infinitesimal holonomy at any point p ∈ S is a representation of the algebra generated by X p + P(X)p. And if P
is not identically zero, this algebra is isomorphic with one of so(n + 1, 1), so(n + 1) or so(n, 1).

This demonstrates that any manifold that is conformal to a symmetric space is either conformally flat or has the
maximal holonomy in its category — SO(n +1, 1) if the symmetric space is not Einstein, and SO(n +1) or SO(n, 1)
if it is (Ricci-flat symmetric spaces are flat).
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Example. These results give an independent proof to the results of Leitner [27], that the conformal holonomy of
SO(4), locally isomorphic to S3

× S3, is SO(7). The group SO(4) is a positive Einstein symmetric space, not
conformally flat (consider the fate of the Tractor vector (1, 0, 0) under parallel translation) so the result follows.

Example. Note that the same argument shows that the manifold Sn(a) × Sn(b) where a 6= b are the radii of the
spheres, has full holonomy SO(2n + 1, 1).

Two similar results also are implied:

Example. If a manifold (M, g) is conformal to an Einstein symmetric space, then it cannot be conformal to any other
Einstein space, or any other symmetric space, unless it is conformally flat.

And:

Example. If (M, g) is conformal to a symmetric space in two different ways, then its tractor holonomy is full or null.

8. Indefinite signature

Most of the results of this paper extend to the general pseudo-Riemannian case, see [3]. The cone construction and
the Ricci-flat results still apply, as do the results about umbilicity. The decomposition theorem, however, requires an
extra condition: that K ∩ K ⊥ be of rank 1 or 0 (a condition that is automatically true in the definite signature case).
This is equivalent with requiring that U ∩ U⊥

= 0; without it, the decomposition cannot proceed.
And, unlike the result for so(n + 1, 1) proved in [17], there are non-trivial subalgebras of so(p + 1, q + 1) acting

irreducibly on R(p+1,q+1). Thus we have many other candidate algebras to deal with.
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[15] A. Čap, A.R. Gover, Standard tractors and the conformal ambient metric construction, Ann. Global Anal. Geom. 24 (3) (2003) 231–259.
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dimension, Sūgaku 1 (1947) 18–28.
[34] T.Y. Thomas, On conformal geometry, Proc. Natl. Acad. Sci. 12 (1926) 352–359.
[35] T.Y. Thomas, Conformal tensors, Proc. Natl. Acad. Sci. 18 (1932) 189–193.

http://arxiv.org//arxiv:math.DG/0406299v1
http://arxiv.org//arxiv:math.DG/0406316

	Definite signature conformal holonomy: A complete classification
	Introduction
	Cartan connection: Theory
	The Cartan connection
	The tractor connection

	Conformal geometry
	The Cartan connection
	Equivalences
	One and two dimensions


	Conformally Einstein manifolds
	Important note
	Einstein spaces

	Decomposition theorem
	Preparatory results
	Preserved subbundles
	 K  degenerate
	 K  non-degenerate


	Einstein spaces: Metric cones
	Ricci-flat spaces
	Addendum: Symmetric spaces
	Indefinite signature
	Acknowledgements
	References


